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Abstract— Understanding the targets of regulatory genes has become a challenging problem for bioinformaticians 

and biologists in systems biology. The main issue in solving this challenge consists in finding motifs that are 

finding short, recurring patterns in DNA or in amino-acid sequences that presumably have a regulatory function. A 

motif is considered a signature for a protein family binding to sequence motifs in the genome. The major challenge 

in finding motifs arises from the fact that most of the time the motifs are not well conserved. To discover such 

degenerate motifs, aligning multiple sequence motifs becomes a challenge. Usually, a motif discovery algorithm 

uses some prior information about the motifs to be discovered. In this paper, we present a novel algorithm for 

finding conserved sequence motifs in DNA without having a priori knowledge about the motifs. However, the 

algorithm can be used for motifs sequence both in DNA and in proteins. Our algorithm mainly depends on cutting 

sequences that have conserved motifs into equal fragments, sorting the fragments and then extending in both 

fragment directions. The algorithm runs in a very short time period. It takes 5.5 seconds for a real data sequence 

with length N = 28,000 nucleotides to find its identical, degenerate, long and short motifs; it can be easily 

parallelized by implementing it on General Purpose Graphical Processing Units. The algorithm guarantees to find 

any globally optimal solution within a short time even for sequences with very long motifs. 
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I. INTRODUCTION 

Motif prediction represents one of the most active research areas in bioinformatics since the 

late 1980’s [1]. Most DNA signals allow some minor variations in their sequence. The 

problem is central to biological systems because the identification of these motifs allows the 

construction of connections between genes and regulators through identification of DNA-

protein interactions [2]-[4]. Thus, the signal will actually consist of several different possible 

words, often closely related. Such a collection of words is a repeated pattern which is called a 

motif that appears as a conserved sequence of nucleotides in a DNA or a conserved sequence 

of amino acids in a protein. This conserved pattern is usually taken to be a cis-regulatory 

sequence [3]. For example, finding motifs based on the prediction of a "conserved" sequence 

in the promoter regions of genes can help us discover genes that are possibly co-regulated by 

the same transcription factor(s) [3]. In general, these motifs are well defined, i.e., TATA box 

in the promotor area. Discovering gene regulation mechanisms helps us to understand the 

development, functioning and evolution of an organism. The importance of motifs has 

motivated many researchers to develop different tools and algorithms for finding them. 

Consensus [5] is a greedy multiple alignment that provided a strategy to assess the statistical 

significance of a given information content score based on large deviation statistic; MEME [6] 

uses statistical modeling techniques, such as expectation maximization, to automatically 

choose the best width, number of occurrences, and description for each motif from input of a 
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group of DNA or protein sequences. The algorithm in [7], GibbsDNA [8] and AlignAce [9] 

uses Gibbs sampling where a set of DNA sequences is used to find conserved motifs inside 

them. This is done by choosing a sequence for sampling, choosing a random motif position 

for each unchosen sequence, counting residue occurrences for each position for all unchosen 

sequences, calculating weight for each possible motif position in the chosen sequence, 

randomly choosing a motif position for the chosen sequence using the weights. The whole 

process can be repeated using a new chosen sequence for sampling until the convergence to 

the conserved motifs. The program WINNOWER [10] finds cliques in graphs and uses a 

word-based approach combined with graph-theoretic methods for motif finding and it builds a 

graph with vertices corresponding to substrings from the sample sequences and edges 

corresponding to similar substrings. It was designed to improve the efficiency of existing 

motif finders using random projections of the input's substrings. SP-STAR [11] is a 

combinatorial algorithm for signal finding based on a new insight into the design of scoring 

functions which use the sum of pair scoring. MITRA (Mismatch Tree Algorithm) [12] uses 

mismatch trees to prune an exhaustive search space. It is based on the suffix tree and its 

variant. 

Motif finding in prokaryotic genomes can be one of the following types: 1) supervised, where 

the features of a motif sequence are known, for instance, finding a consensus sequence; 2) 

unsupervised, where little is known about the motif sequence, for example, finding a 

conserved cis-regulatory region of coregulated genes; and 3) exploratory motif finding, where 

no prior information is available about the motif sequence [13]. Although many approaches 

used in previous research needed prior information about motifs [9], [13]-[17], this paper 

focuses on exploratory motif finding, which does not need any prior information about motifs. 

Usually some prior information about motifs is needed by a motif searching algorithm. This 

piece of information could consist of knowing a good alignment of DNA or protein sequences 

before starting the motif searching process (see [18]). Motifs have such properties as being a 

palindrome or tandem repeats, knowing something about the motif locations (e.g., conserved 

regulatory motifs upstream of coregulated genes), or knowing good estimates of algorithm 

input parameters (see [11]). For example, in [11] such an algorithm runs with a progressively 

increasing parameter "d" and a fixed parameter "l" until a signal graph becomes non-empty. 

Not having good initial estimates of "d" and "l" makes the construction of such a graph very 

difficult and the results poor. 

Many methods and algorithms have been proposed by researchers to discover sequence motifs. 

The most important types of motif finding algorithms include phylogenetic footprinting, 

integrating algorithms, word-based algorithms, and probabilistic algorithms. Phylogenetic 

footprinting algorithms [19]-[24] build a global multiple alignments of the orthologous 

promoter sequences and identify a conserved region in the alignment. Integrating algorithms 

improves motif finding from genomic sequences by integrating DNA sequence data from 

coregulated genes and phylogenetic footprinting [16], [17], [25]-[30]. The procedure of these 

algorithms involves integrating motif overrepresentation and cross-species conservation. 

Word-based algorithms use optimized data structures of repeated motifs from a DNA 

sequence to construct suffix trees [31] and then discover the motif models .Probabilistic 

algorithms [32], [33] calculate the information content score of multiple sequences, count the 

number of possible alignments and find the p-value to assess the statistical significance of an 

alignment by determining the expected frequency of an information content score.  

Our motivation for this research is to propose an algorithm to increase the speed and the 

accuracy of finding motifs, which are the main drawbacks of motif finding algorithms [9], 

[13]-[17]. These issues are critical when we need to identify thousands of motifs in a genome 
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[34]. Also, this paper proposes a possible parallelization strategy of the algorithm using 

General Purpose Graphical Processing Units (GPGPUs). 

In previous research, we discovered the mechanism of gene regulation for a complex and 

large genetic network using ensemble methods [35]-[38]. The key idea was identifying an 

ensemble of models consistent with the data available to predict system behavior over time 

instead of a model consistent with the data that is based on numerical and parallelization 

strategies on the GPGPU [39], [40]. The GPGPU is used to solve for 2418 systems of ODEs 

that have the same mathematical form and different data. However, the research here focuses 

on gene regulation from the motif perspective, i.e., the DNA binding site of the regulator. The 

real bioinformatics challenge here is that if several promoters have degenerate motifs as 

demonstrated in Fig. 1, then different motif sequences might be bound to the same 

transcription factor to turn a regulation process on or off. Thus, the challenge is that we do not 

search for an identical sequence of nucleotides in a DNA or identical sequence of amino acids 

in a protein; rather the search is for conserved sequences that are not identical, have slight 

changes in their building blocks and are bound to the same transcription factors [2]. This is 

not simply done by lining up sequences and drawing boxes, although that is how the first 

motif, TATA box in human, was found. Most of these motifs require some sort of algorithm 

to find them. 

Fig. 1 represents six DNA sequences with different length and degenerate motifs in boxes 

marked for a particular regulator located in different position of the sequence. The problem is 

how to find those motifs computationally without any prior knowledge about them, and 

within a reasonable computational time. 

 

 
Fig. 1. Six DNA sequences with different length and with degenerate motifs 

 

II. METHODS 

In essence, to locate a motif like the one in Fig. 1, we propose the following approach. If we 

were to know the length of the "conserved" sequence to be K (K is usually between 5 and 30), 

then we could go through all possible combinations of K-mers, one K-mer from each 

sequence, and calculate the information content (IC) of the entire combination. We call a 

combination a "conserved" site or motif if the IC is high. However, the problem is that there 

are too many combinations to consider; and sequences and motifs are not aligned as shown in 

Fig. 2. For example, if we have 20 sequences each having 100 nucleotides, then for K=16 we 

have (100-K+1)
20

 =85
20

 combinations. If a computer makes 10
6
 comparisons per second then 

we need approximately 1.25X10
25

 years of simulation! In the method section, we present a 

smart solution to find these conserved motifs accurately and quickly. 

Given a sample of sequences with unknown pattern (motif) that appears at different unknown 

positions in each sequence, can the unknown pattern be found? The following Cut-Sort 

algorithm finds the motif in each sequence accurately and in a very short amount of time. It is 

TGTGAAAGACTGTTTTTTTGATCGTTTTGACAAAAATGGAAGTC

CACA 
AAGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATCCC

ATAG 
TGATGTACTGCATGTATGCAAAGGACGTCAGATTACCGTGCAGT

ACAG 
TAAACGATTCCACTAATTTATTCCATGTCACTCTTTTCGCATCT

TTGT 
ACATTACCGCCAATTCTGTAACAGAGATCACACAAAGCGACGGT

GGGG 

ACTTTTTTTTCATATGCCTGACGGAGTTGACACTTGTAAGTTTT

CAAC 
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called CUT-SORT algorithm because the core of the algorithm is to CUT sequences into 

fragments of equal length and then to SORT them. Fig. 3 demonstrates the Pseudocode of the 

following algorithm and Fig. 4 depicts the algorithm using a flowchart. The whole program 

code using C++ computer language and the real genes data [41], which were taken from real 

data of 50 disordered patient gene samples, are available for free on the following link 

https://sourceforge.net/projects/cut-sort-code-data/files/ 

The Cut-Sort Algorithm: Given "N" DNA sequences, each sequence "S" with different 

lengths, finds a motif of size "k" that is conserved among all N sequences. The user enters to 

the program some sequences with any length; and the program will output the conserved 

motifs with size k. 

1- Divide each sequence "S" into fragments with length L. For example, L could be 

chosen to be 5<L<30. 

2- Save the fragment position that shows where its location is in the original sequence 

"S". 

3- Sort those fragments alphabetically and group them. Now each group has the same 

fragments with no nucleotide differences. However, those fragments have different 

sequence locations and positions.  

4- Each fragment within a group is now a nucleus for a motif to be found in different 

sequences "S". 

5- Return each nucleus to its original sequence "S" and start extending each nucleus of 

length "L" from the same group in both directions by adding one nucleotide at a time 

to the motif nucleus. Compare all added nucleotides in the sequences of the same 

group after each extension as presented in Fig. 2 below. 

6- Stop when (a) there is any nucleotide mismatch if the goal is looking for exact motifs, 

(b) when the number of nucleotide differences exceeds some threshold T1 in a 

degenerate motif, (c) when a certain threshold of a motif length T2 is reached. 

 

 

S1 

S2 

S3 

S4 

S5 

S6 

 

Fig. 2. A group of six nuclei with length equals five nucleotides for each within six DNA sequences 

 

Fig. 2 shows six DNA sequences S={S1,S2,….S6} and N=6, with nucleus length L=5 

(TCACA) in one group. The nucleotides are in the black box. The algorithm will extend the 

arrows for all nucleus one nucleotide at a time in both directions in each single group to find 

whole motifs. For example, you will find the exact motif GTTTTCACAAAA in S1, S2, and 

S6 when the nucleus TCACA is extended in both directions. 

 

 

 

 

 

TGTGAAAGACTGTTTTTTTGATCGTTTTCACAAAAATGGAAGTCCACA 

AAGTCCACATTGATTATTTGCACGTTTTCACAAAACTATCCCATAG 

TGATGTACTGCATGTATGCAAAGGACGTCACATTACCGTGCA 

TAAACGATTCCACTAATTTATTCCATGTCACACTTTTCGCATCTTTGT 

ACATTACCGCCAATTCTGTAACAGAGATCACACAAAGC 

ACTTTTTTTTCATATGCCTGACGGTTTTCACAAAAGTAAGTTTTCAAC 
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INPUT: Set of DNA or Protein sequences each one with an unknown 

pattern at an unknown position S{S1,S2,S3,…,SN}, 

DIVIDE Si into fragments F with length L and save F positions; 1≤ 𝑖 ≤
𝑁, 

SORT F alphabetically; all similar F are grouped; call each group G, 

 

DO  

         FOR EACH F in G extend in both directions, one nucleotide at a 

time 

 

COMPARE extended nucleotides in a group 

IF Exactly matched  

THEN extend motifs 

ELSE IF # nucleotide differences < threshold T1  

THEN extend motifs 

ELSE Exit 

 

While (Motif length <threshold T2) 

 

OUTPUT: Set of discovered conserved regions or motifs  
Fig. 3. Pseudocode of the Cut-Sort algorithm 

 

The algorithm finds all sequence motifs in a given set of DNA or protein sequences without 

having a priori knowledge about them. It can find identical, degenerate, long and short motifs. 

Fig. 4 depicts the algorithm flowchart. 

 

 
Fig. 4. Cut-Sort algorithm flowchart 
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The algorithm will keep extending nuclei of the same group, one nucleotide at a time in both 

directions until the number of nucleotides for the nuclei in the group becomes greater than 

threshold T1 or the length of the found motifs in the group becomes greater than threshold T2. 

III. RESULTS AND DISCUSSIONS 

Predicting motifs is crucial for understanding biological processes and systems biology in 

particular [3]. It can help to identify proteins, DNA, or RNAs that have a specific property of 

interest (for example, being phosphorylated by a particular kinase or promoter that has a 

particular property that is likely to be regulated by a particular transcription factor). It also 

helps to infer which factors regulate which genes. Model gene expression predicts how the 

occupancy of that transcription factor would change gene expression [36], [38]. The 

developed algorithm found short, long, and degenerate motifs from different sequences. The 

algorithm was able to find very short motifs in different DNA samples and different sample 

positions as shown in Table 1. It at the same time found very long motifs as it is shown in 

Table 2. Moreover, Table 3 shows that the algorithm can find not only the identical motifs but 

also the degenerate motifs with nucleotide mutations.  

Table 1 represents short motifs with length 8 nucleotides found in the data. The algorithm 

finds short motifs in different samples and positions. For example, it found 5 short motifs in 5 

different DNA samples (S17, S2, S20, S32, and S46) out of 50 samples. Each motif in those 

samples found in different positions, (i.e. first motif found in sample#17 in nucleotides 

position 200, and so on). The minimum and maximum lengths of the motif depend on 

predetermined thresholds (T2) as presented in the algorithm above. 

 

TABLE 1 

SHORT MOTIFS FOUND IN DATA WITH LENGTH EIGHT NUCLEOTIDES 

Short Motifs Sample # Start Position in the Sample 

GAGGGCAA 17 200 

GAGGGCAA 2 744 

GAGGGCAA 20 224 

GAGGGCAA 32 216 

GAGGGCAA 46 216 

 

Table 2 demonstrates long motifs found in the data with length 100 nucleotides. The 

algorithm finds long motifs in different samples and positions. For example, it found 6 long 

motifs in 6 different DNA samples (S12, S37, S39, S45, S47, and S49) out of 50 samples used. 

The minimum and maximum lengths of the motif depend on predetermined thresholds (T2) as 

shown in the algorithm above.  

Table 3 shows degenerate motifs, where motif sequences have slight changes in their building 

blocks and are still bound to the same transcription factors. The algorithm finds degenerate 

motifs in different samples and positions. For example, it found 7 degenerate motifs in 7 

different DNA samples (S13, S29, S29, S38, S44, S46 and S5) out of 50 samples used. Each 

motif in those samples is found in different positions, (i.e. the first motif found in sample#13 

in nucleotides position 124, and so on). The nucleotide differences can be less or more based 

on a predetermined threshold (T1) as shown in the algorithm above. 
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TABLE 2 

LONG MOTIFS FOUND IN THE DATA WITH LENGTH 100 NUCLEOTIDES 

Long Motifs Sample # 

CCGTGGCACTGGACAACAGTGTGTACCTGTGGAGTGCAAGCTCTGGTGACATCC

TGCAGCTTTTGCAAATGGAGCAGCCTGGGGAATATATATCCTCTGT 
12 

CCGTGGCACTGGACAACAGTGTGTACCTGTGGAGTGCAAGCTCTGGTGACATCC

TGCAGCTTTTGCAAATGGAGCAGCCTGGGGAATATATATCCTCTGT 
37 

CCGTGGCACTGGACAACAGTGTGTACCTGTGGAGTGCAAGCTCTGGTGACATCC

TGCAGCTTTTGCAAATGGAGCAGCCTGGGGAATATATATCCTCTGT 
39 

CCGTGGCACTGGACAACAGTGTGTACCTGTGGAGTGCAAGCTCTGGTGACATCC

TGCAGCTTTTGCAAATGGAGCAGCCTGGGGAATATATATCCTCTGT 
45 

CCGTGGCACTGGACAACAGTGTGTACCTGTGGAGTGCAAGCTCTGGTGACATCC

TGCAGCTTTTGCAAATGGAGCAGCCTGGGGAATATATATCCTCTGT 
47 

CCGTGGCACTGGACAACAGTGTGTACCTGTGGAGTGCAAGCTCTGGTGACATCC

TGCAGCTTTTGCAAATGGAGCAGCCTGGGGAATATATATCCTCTGT 
49 

 

TABLE 3 

DEGENERATE MOTIFS FOUND IN THE DATA 

Degenerate Motifs Sample # Start Position in the Sample 

CACTCCTGGGATCCCCCCCCCCTTTTTTAAAAG 13 124 

CCGGTGTTTTCTCCCCCCCCCCCCTGGGGTTGC 29 252 

ATCTGATATTTACCCCCCCCCCCGTGACGTCAC 29 468 

GCCCCCCCCCGCCCCCCCCCGAAGACCCGCCTT 38 316 

CCCCCCCCCTCCCCCCCCCCAAAAAACGCCTTT 44 308 

GTTGCTCCCTATCCCCCCCCTCAGGCAGGAGAA 46 404 

TCCACCCCAAAGCCCCCCCCCGCTCCCCCCCGA 5 292 

 

With the advent of high-throughput sequencing technology to identify DNA-protein 

interactions, finding motifs becomes a real challenge because of the thousands of putative 

binding sites generated [42]. In order to understand some aspects of regulation of gene 

expression, many computer scientists and biologists invented and developed diverse 

approaches to find motifs quickly and accurately. The developed algorithms involve 

combinatorial enumeration, probabilistic modeling, mathematical programming, neural 

networks and genetic algorithms. Evaluating the performance of all of these approaches has 

still been a difficult task because there is no obvious understanding of the regulatory 

mechanisms. Thus, there is no standard to measure the correctness of those tools. However, 

we have tested the Cut-Sort algorithm on real data for 50 patient samples [41] against the 

exhaustive search algorithm, which is the most accurate approach. Core i7 CPU@2.4GHz and 

12GB RAM is used to show the accuracy and the speed of the Cut-Sort algorithm proposed 

here. The algorithm has found all motifs in different samples. Fig. 5 shows that the Cut-Sort 

algorithm needs much less computational time than the exhaustive search when the number of 

nucleotides is changed. For example, the Cut-Sort algorithm needs 0.945 Sec to find all 

motifs for the total number of nucleotides equal 9000 while the exhaustive search needs about 

1141.03 to find all motifs for the same number of nucleotides. Fig. 6 illustrates the 

relationship between the nucleus length and time. It is obvious that increasing the nucleus 

length will decrease the required computational time for the same set of DNA sequences. 

However, this will generally increase the specificity of the found motifs and decrease their 

numbers as depicted in Fig. 7. 
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Fig. 5. Relationship between the number of nucleotides and the needed computational time for both the exhaustive 

search and Cut-Sort algorithm 

 

Fig. 5 demonstrates the relationship between the number of nucleotides and the needed 

computational time for both the exhaustive search and Cut-Sort algorithm. The time in 

seconds needed by the Cut-Sort algorithm is substantially less than that in the Exhaustive 

search algorithm, which finds motifs in different number of nucleotide sequences. The Cut-

Sort algorithm found the same set of motifs in 1.922 seconds instead of more than seven 

hours in the exhaustive search. The numbers that appear on the figures are the time in seconds. 

 

 
Fig. 6. Relationship between the nucleus length and time 

 

Fig. 6 shows the relationship between the nucleus length and time. The time in seconds 

needed by the Cut-Sort algorithm decreases as the nucleus length is increased. A longer 

nucleus length leads to a faster performance by the Cut-Sort algorithm. When the nucleus 

length was three nucleotides then the algorithm needed 1.1881 Secs to find all motifs 

corresponding to this nucleus length. When the length of the nucleus was 21 nucleotides, the 

algorithm needed 0.427 Secs to find all motifs. However, the motifs' sequences and their 

count are changed when you change the nucleus length as shown in Fig. 7 below. The pair of 

numbers shown on the figure corresponds to nucleus length and time in seconds. 
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Fig. 7. Nucleus length versus # of group and # of motifs inside a group 

 

The number of candidate motifs inside a group decreases monotonically with Nucleus Length 

(left vertical axis); and the number of candidate groups ultimately decreases (but non-

monotonically) (right vertical axis). The number of motifs inside groups is identified before in 

Fig. 2. Each group is defined uniquely by its nucleus; and there can be multiple nuclei initially 

in searching for a motif. The left vertical axis is the number of motifs inside a group. The 

right vertical axis is the number of groups defined by their nucleus. The numbers that appear 

on red line correspond to nucleus length and total # of motifs inside all groups, while those 

appearing on the blue line correspond to nucleus length and # of groups. 

In Fig. 7, as the length of the fragment (nucleus) is increased, then the number of candidate 

groups found for a given set of genes tends to decrease, where each group has the same set of 

nucleus motifs, and at the same time the number of nucleus motifs inside the group decreases 

as well. However, as the length of the nucleus increases, the space of the found motifs will 

decrease so that some short motifs may disappear from the search space. This depends on the 

required minimum and maximum motif lengths, which are considered user predefined values. 

Many motif finders require these values; for example, MEME [6] needs to predefine the 

minimum and the maximum motif length before starting the search process. The irregular 

increasing in the number of groups when the nucleus length was 6 happened because, with 

this length, the program found many groups where each group has similar nuclei; this 

unpredictable behavior depends on the used sequences but the number of groups should 

generally decrease when the nucleus length increases. 

The Cut-Sort algorithm was able to find global optimal solutions. This was one of the 

drawbacks that appeared in probabilistic algorithms where the competing algorithm may 

converge to a local optimal solution because the competitor uses some form of local search 

[9], [16], [17], [33], [43], [44]. On the other hand, Cut-Sort algorithm improved the speed 

even for very long motifs. The speed problem is clearly the drawback of some word-based 

approaches that rely on exhaustive enumeration [14], [15], [45]. For example, WINNOWER, 

which is a word-based approach, requires significant computational resources (time and 

memory) and becomes very slow when finding subtle motifs in very large samples [11]. In 

contrast, Cut-Sort algorithm found subtle motifs within a very short time as demonstrated in 

the result section. As for the probabilistic or machine learning implementations of local search 

strategies, the shortcoming of these algorithms is that, for subtle motifs, they often converge 

to local optima that represent random patterns rather than a motif [11]. Li, Ma, & Wang 

proposed a different combinatorial paradigm with a proven performance that avoids local 

optima. However, the running time of the algorithm is huge for real scenarios [46]. Of course, 
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it is obvious that there is a trade-off between avoiding local optima and speed for motif 

finding algorithms. In comparison, Cut-Sort algorithm found a global optimal solution within 

a very short time, as illustrated in the result section. 

IV. FUTURE WORK 

A potential parallelization scheme for the algorithm: Unlike the other sequential algorithms 

[25], [47]-[51], which are inherently sequential for solving the motif identification problem, 

this algorithm can be parallelized on a GPGPU. In this algorithm, detecting motifs in given 

sequences fits the SIMD (single instruction, multiple data) and warp-level parallelism 

concepts (where warp size for current NVIDIA GPUs is 32 threads). A common 

parallelization strategy in this category [40], [52] is (a) to increase the number of warps by 

increasing the number of thread blocks per streaming multiprocessors on the GPGPU and (b) 

to decrease the number of threads in a thread block. Side by side, this optimization strategy 

provides more independent warps from other thread blocks when one warp is stalled. The 

potential parallel algorithm proposes to assign a thread for each nucleus sequence in a group; 

and then every thread will be tasked to look for the full motif by extending one nucleotide at a 

time in both directions of the nucleus. By harnessing the power of GPGPU (NVIDIA Tesla 

K40), 2880 cores can be utilized in parallel to work on 2880 nuclei at once rather than 

working on them sequentially. All of the cores will execute the same code but with different 

data, SIMD principle. To maximize the usage of the GPGPU resources, we can use a warp per 

block concept; and for a large-scale problem we can extend the same algorithm by using 

multi-GPGPUs and assigning different groups to each GPGPU. 

V. CONCLUSIONS 

A conserved sequence motif is a repeated pattern in DNA or proteins. It is indicative of a 

biological function such as DNA-binding by a protein. Finding sequence motifs represents 

one of the most fundamental problems in elucidation of complex biological systems [53]. One 

of the most important applications is finding genes that are transcriptionally (co-) regulated by 

the same transcription factor [3]. We developed a novel algorithm that finds degenerate motifs 

without any prior information about them. The proposed algorithm guarantees to find any 

globally optimal solutions within a short time even for very long motifs (0.758 sec). Thus, we 

improved the drawbacks of probabilistic algorithms where the competing algorithm may 

converge to a locally optimal solution because the competitor uses some form of local search 

[9], [16], [17], [33], [43], [44]. The Cut-Sort algorithm improved the speed which is the 

drawback of some word-based approaches that rely on exhaustive enumeration [14], [15], 

[45]. In the future work, we need to use the proposed parallel algorithm on the GPGPU in 

order to extract conserved regions within a very short time for large scale genomic problems 

involved in the reconstruction of genome scale networks using DNA-protein binding sites 

[36]. The algorithm will be used for characterizing binding sites in particular family of 

proteins taken from a database [54]. Both problems require scalable solutions as illustrated 

here. 
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